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The Isaacs-Bellm~m (IB) equations for controllable systems and differential games whose dynamics 
contain fast and slow motions (see, for example, [1-7]) are singularly perturbed, in the sense that the 
Hamiltonians contain terms with coefficients of the form l/e, where e is a small parameter. It is well 
known that the value function of a differential game is identical with the minimax (and/or viscosity) 
solution of the Cauchy problem for the IB equation [8-11]. In this paper we will investigate the asymptotic 
behaviour of minhnax solutions as e ---> 0. We will first establish sufficient conditions for the solutions 
of singularly-perturbed Hamilton-Jacobi (H J) equations to have a limit and show that this limit is a 
minimax solution of the unperturbed equation. Then, using this result, we will investigate the asymptotic 
behaviour of value functions for similarly perturbed differential games. Use will be made of the elements 
of convex and non-smooth analysis [12, 13]. 

1. We present some information from the theory of minimax solutions of first-order partial differential 
equations [9, 11]. We will consider a Cauchy problem for the HJ equation 

~u/~t + H(t, x, Dxu) = O, (t, x) E G = (0, O) x R" (1.1) 

u(0, x) = if(x), x ~ R" (1.2) 

We will assume that the function o(x) is continuous and that the Hamilton H(t,  x, p )  is continuous 
in its domain of definition [0, 0] × R ~ x Ra; moreover, it satisfies the estimate 

IH(t,x,O)l 
< - (1.3) sup 

(t,x)~[0.0l×~ (l+llxll) 

and the following Lipschitz conditions in p and x 

• t t  ~ - -  I H ( t , x , p  ) - H ( t , x , p  )1-~ 2L(x)llp' p"ll (1.4) 

for any (t, x) e [0, 0] x R", p ] p "  e R n where ~.(x) := (1 + I1 x II)tx, P. being a constant 

r lH( t ,x ,  p) - H(t ,  y, p)l} 
sup ~ . . . . . .  < oo 

t t .xvp)[ IIx-yl l( l+ p ) 
(1.5) 

for (t, x, y, p) ~ [0, 0] x B x B x R n, where B is an arbitrary bounded domain B C R n. 
A continuous ftmction G ~ (t, x)  ~ u(t, x)  ~ R which is continuously differentiable in G and satisfies 

Eq. (1.2) and Eq. (1.1) for all ( t ,x)  ~ G is called a classical solution of problem (1.1), (1.2). Here G = 
[0, 0] x / ~ ;  D~u = ( O u / ~ l , . . . ,  Ou/~xn) is the gradient of the function u. 
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As is well known, Cauchy problems and boundary-value problems for the HJ equations that occur 
in applications do not usually have classical solutions. One therefore introduces generalized solutions. 
In this paper we will use the concept of a minimax solution, which may be defined in a variety of ways; 
among other things, one can utilize the tools of non-smooth analysis: directional derivatives, cones of 
tangent directions, and sub- and super-differentials (the formulations of the definitions and proof that 
they are equivalent may be found, for example, in [9]). 

Before presenting one of these definitions, we observe that any definition of a minimax solution 
contains, explicitly or implicitly, the property that the graph of such a solution is invariant with respect 
to what are known as characteristic inclusions, which may be introduced as follows. 

Let S be some non-empty set and M a many-valued mapping 

[0,0]x R n x S~(t,x,s)l---> M(t ,x ,s)  c R n x R (1.6) 

The pair (S, M) will be called a characteristic complex (or, briefly, a complex) if the following conditions 
hold. 

1. For any (t, x) E [0, 0] x R ~ and s e S, the set M(t, x, s) C R n x R is non-empty, convex and closed. 
For any (t, x, s) ~ [0, 0] x R ~ x S and (f, g) ~ M(t, x, s) 

Itfll ~< ~x), I g I ~< re(t, x)(l + II x II) 

where ~,(x) is the quantity defined in (1.4). For any s e S, the function ~ re(t, s) is summable over [0, 
0] and the many-valued mapping (t, x) ~ M(t, x, s) is upper semicontinuous. 

2a. For any (t, x) ~ [0, 0] x R ~ and p ~ R ~ 

2b 

max min{(f, p) - g: ( f  , g) ~ M(t, x, s)} = H(t, x, p) 
s~S 

max min{(f, p ) -  g: ( f  ,g) e M(t,x,s)} = H(t,x, p) 
s~S 

Denote the set of complexes (S, M) by C(H). We note that the conditions are satisfied, for example, 
by the pair (S, 214) where S = R n and 

M(t,x ,s)  = {(f,g) ~ R n x R:llfl l~ < ~,(x), g = ( f , s ) -  H(t,x,s)} 

( t , x ) ~ G ,  s e R  n 

where ~,(x) = (1 + II x II)g is the same as in the Lipschitz condition (1.4). 
Choose a complex (S, M) ~ C(H) and s ~ S arbitrarily. The symbol Sol(t0, x0, z0, s) will denote the 

set of absolutely continuous functions x( • ), z( • )): [0, 0] ~ / ~  x R. that satisfy the condition (X(to), 
Z(to)) = (x0, z0) and the differential inclusion 

(,~(t),~(t)) ~ M(t,x(t) ,s)  (1.7) 

Definition 1. A minimax solution of Eq. (1.1) is a continuous function [0, 0] x R  ~ ~ (t,x) ~ u(t,x) 
R that satisfies the following condition of weak invariance with respect to (1.7): for any (to, x0, z0) e gr 
u, s e S and x e [t 0, 0] a trajectory (x( . ) ,  z ( .  )) ~ Sol(t0, x0, z0, s) exists such that (x, x(x), z(x)) ~ gr u. 

We will call (1.7) a characteristic inclusion. It is known that this definition is independent of the choice 
of a complex (S, M) e C(H). 

It can also be shown that minimax solutions and viscosity solutions in the sense of Crandall and Lions 
[10] are equivalent. Under our assumptions concerning the Hamiltonian and the terminal function o, 
one and only one minimax solution of the Cauchy problem (1.1), (1.2) exists. The proofs of these facts 
may be found in [9, 11]. 

The concepts of upper and lower solutions play a major role in the theory of minimax solutions. We 
present the definitions in a form convenient for further use in this paper. 

As before, S will be some non-empty set and M a many-valued mapping of type (1.6). Call the pair 
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(S, M) an upper ('lower) characteristic complex if conditions 1 and 2a (1 and 2b) are satisfied. The set 
of upper (lower) characteristic complexes will be denoted by C T (H) (C ~ (H)). 

Definition 2. An upper (lower) solution of Eqs (1.1) is a lower (upper) semicontinuous function [0, 
0] x iT ~ (t, x) ~, u(t, x) ~ R satisfying the following condition: For any (to, x0, z0) e epi u((to, xo, zo) 
hypo u), s e S and x ~ [to, 0], a trajectory (x( . ) ,  z(;t))  e Sol(t0, x0, z0, s) exists such that (x(x(x)), z(x)) 

epi u(('~, x(x), z(x)) ~ hypo u). Here (S, M) ~ C (H) ((S, M) ~ C ~ (H)), Sol(t0, x0, z0, s) is the set 
of trajectories of the differential inclusion (1.7) that satisfy the condition (X(to), Z(to)) = (Xo, Zo). 

The symbols epi u and hypo u denote the sets 

M D 

{(t,x,z) :z>>- u(t ,x),( t ,x)~G}, {(t,x,z):z<~u(t,x),(t,x)~G} 

respectively--the epigraph and hypograph of the function u. The definition of an upper (lower) solution 
is independent of the choice of the complex (S, M) e C "~ (H) (S, M) ~ C ~" (H). It is known that a function 
u is a minimax solution if and only if it is simultaneously an upper and a lower solution. 

2. We will consider two Cauchy problems, unperturbed and perturbed 

~u/~t+H(t ,x ,  Dxu)=O, u(O,x)=o(x) (2.1) 

3u~ I 3t + He(t,x,y, Dxur,Dyue)=O, ue(O,x,y)=O(x) (2.2) 

In these equations, as before, t ~ (0, 0),x ~ Rn,y E R 1 is a new variable, e is a positive real parameter, 
and the function ue depends on variables (t, ~), where ~ = (x, y). Accordingly, the Hamiltonian He 
depends on the variables (t, ~, if), where/~ = (p, r), t e R 1. It is assumed that the function o(x) is 
continuous, and the Hamiltonians H(t, x, p) and H~(t, ~, ~) satisfy the conditions indicated in 
Section 1. 

Let us examine,, the conditions under which the solutions uE of problem (2.2) converge as e ---> 0 to a 
solution u of problem (2.1). To that end, we intrgduce further constructions. 

Let p > 0, (S, M) ~ C 1' (H) or (S, M) ~ C ~ (H). The symbol GP(to, x, Xo, Zo, s) will denote the 
attainability set of the differential inclusion 

( Yc(t),~.(t)) ~ M(t,x(t),s) + Bp. (2.3) 

where s ~ S, 0 ~< :0 < x ~< 0, (x0, Zo) is the initial position; Bp = {(f, g) e R ~ x R: Ilfll 2 + g2 ~< p2}. Note 
that (x*, z*) ~ G°(to, ~, Xo, Zo, s) if and only if a trajectory of the differential inclusion (2.3) exists such 
that (X(to), Z(to) ) := (x0, z0), (x(x), z(x)) = (x*, z*). Speaking somewhat freely, we will also refer to the 
attainability set of tl~e complex (S, MP). 

Let (Se, Me) E C ~ (HE) or (Se, Me) ~ C T (He) , s' ~ Se. The symbol Go(to, x, x o, Yo, Zo, s') will denote 
the attainability set of the differential inclusion 

(.,?(t),)'(t), ~(t)) ~ M e (t, x(t), y(t), s') (2.4) 

Note that Ge(. • .) is a set in R" x R a x R. We will also say that Ge(. • .) is the attainability set of the 
complex (St, Me). 

Condition 1 (Condition 2). A complex (S, M) e C T (H) (a complex (S, M) ~ C "~ (H)) and a compact 
set Y C R 1 exists such that 

GP(to,X, Xo,Zo,S) x Y ~ U Gt(to,X, xo,Yo,Zo,~le(s)) (2.5) 
yo E Y 

where G t ( . . . )  is 1Lhe attainability set of a certain complex (Se, Me) e C T (H~) ((Se, M~) ~ C ~ (He)). It 
is assumed here that for any number E > 0 and point (t., x.) ~ (--oo, 0) × R" we have a well-defined 
mapping s ~ ~e (is): S ~ Se and quantities p = p(E, t . ,x.) > 0, ~5 =(e, t . ,x.) > 0 such that lim p(e, t., 
x.) = 0, lim ~(E, t., x.) = 0 as ~ ~ 0. Condition (2.5) must hold for all e > 0, s ~ S, z0 e R, (to, x0) 
B(t., x.; o~) (tx = tx(t., x.) ~ (0, 0 - t.)), x ~ [to + ~i(e, t., x.), 0]. The symbol B(t., x.; 00 will denote the 
closed sphere in R x R" of  radius ~t with centre at the point (t., x.). 
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This formal condition will serve as a sufficient condition for solutions of  singularly per turbed equations 
to approach an asymptotic limit. We will then  consider examples of  differential  games in which this 
condition is fairly easy to verify. As will be evident from the examples, the compact  set Yin (2.5) contains 
the domain  o f  at traction of  the fast variables. 

Theorem 1. Le t  Condit ions 1 and 2 be satisfied. In addition, let the set Y in Condit ion I be the same 
as the Y in Condit ion 2. Let  u~(e > 0) be minimax solutions of  problem (2.2). Then  for  any (t, x, y)  
[0, 0] x R ~ x Y a limit 

li.m ue (t. x, y) = u(t, x)  
e ,~0 

(2.6) 

exists, and the funct ion u: [0, 0] x R n ~ R def ined by this limit relat ionship is a minimax solution of  
problem (2.1). 

We first prove a few auxiliary proposit ions.  

Proposition 1. Suppose Condit ion 1 is satisfied. Define 

u ° ( t ,x)  = min v ~(t,x, y) 
y~Y 

(2.7) 

where  re(t, x, y)  is an upper  solution of  p rob lem (2.2). Le t  B(t. ,  x.; a )  be a closed sphere in (0, 0) x R ~, 
which is def ined by Condit ion 1. Then,  for  any (to, x0) ~ B(t. ,  x.; a),  Zo >>- v°(to, Xo), s ~ S, ~ ~ (t o + 8, 

. . . . 0 0], a point  (x , z ) ~ GP(t0, x, x0, z0, s) exists such that  (% x , z ) ~ epi v ~. 

Proof. Choose  Y0 e Y so that 

U E ( to ,xo,  Yo ) = m i t r e  ( t O,x O, y) = u O ( to ,x  0 ) 

By assumption, Zo >I v°(to, Xo), and so (to, xo, Yo, Zo) ~ epi rE. Since ve is an upper  solution of  problem 
(2.2), a point  

( x* ,y* , z* )  ~ G E (t O,x ,x  O,yO,zO AgE (s)) 

exists such that  z* >I re(x, x*,y*).  It follows f rom (2.5) that 

( x*, y* ,z*)  6 GP ( to, X,xo, Yo,Zo ) X y 

Since y* e Y, it follows that vt(x, x*, y*)  >I v° (x, x*). Hence  we obtain z* >! v° (x, x*). 

Proposition 2. The  function 

u h( t ,x)  = (2.8) lim~f u ° ( t ' ,  x ") 

{t'.x')--~t,x) 

is an upper  solution of  problem (2.1). 

h Proof. It can be shown that the function v takes finite values. This function is lower semicontinuous and satisfies 
the condition vh(O, x ) =  6(x) (see the proofs of the analogous statements in [9, l i  D. 

Let (S, M) • C + (H) be the complex occurring in Condition 1. We choose (to, x0) e [0, 0) x R n, z0 >I vh(t0, x0), 
x • (to, 0], s, E S arbitrarily. We will show that (x( . ) ,  z( .  )) • Sol(t0, xo, z0, s) exists such that (x, x(x), z(x)) • epi 
v or, what is the same 

{x) x G(to, X,Xo. Zo,S) c~ epiu h ~: . . .  (2.9) 

where G( . . . )  is the attainability domain of the complex (S, M). 
Let (to, Xo) ~ int B(t., x.; a) (int B is the interior of the sphere B). Let us first consider the case z0 > vh(to, XO). 

In that case, by (2.8), a sequence ( %  tk, xk)7=a exists, such that Zo >1 v° k (tk, xk), limk__,.ek = O, limk__~(tk, X~) = (to, 
Xo). We may assume that (tk, xk) ~ B(t., x.; ~x) and tk + 8(e~, t., X.)) < X for all k = 1, 2 . . . . .  Using Proposition 2, 
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k 0 
we see a sequence (x k, z*) ¢ G o (tk, x, xk, z0, s) exists such that (% x*, z*) e epi vt,. Here, .by condition 1, pk = p(~) 
---> 0 as k --* **. We. may assume without loss of generality that the limit lir~_.***(x*, z k) = (x*, z*) exists. Note 
that 

(x*, z*) ~ G(to, x, Xo, zo, s). 

Since z k >~ vhk(x, X k) it follows by the definition of the function v h that z* ~> vh(x, X*). ThUS, we have proved 
(2.9) in the case z0 :> ~3(t0, x0). 

In the case z0 >t vh(t0, xo), we consider the sequence zk = Zo + 1/k. Since zk > vh(to, XO), it follows from what has 
been proved that 

{x}×G(to,x,xO,zk,s)~epiu h ~... 

Passing to the limit, using the fact that the set epi v h is closed and that the mapping z ~ G(t0, x, x0, z, s) is upper 
semicontinuons, we again get (2.9). 

Suppose that C~ndition 2 is satisfied. Let  Wc(E > 0) be lower solutions of problem (2.2). Consider 
the functions 

w°r(t,x) = maxw~( t ,x ,y ) ,  w h ( t , X )  ~" lim.sup w°( t ' , x  ') (2.10) 
y~Y 54,0 

(t',x')-~(t.x) 

It can-be shown that w h is a lower solution of  problem (2.1). The proof is analogous to that of Propositions 
1 and2.  

Let  ut(t, x, y) 0z > 0) be minimax solutions of  problem (2.2). Put ve = wt = ut in (2.7), (2.8) and 
(2.10). Define the corresponding functions v h and ~v h. By construction, ~v h I> ~h. 

On the other  hand, as v n is an upp.er solution and w " a  lower solution of  problem (2.1), it follows 
[9-11] that w h ~< v h. Therefore v h = ~ = u, where u is a minimax solution of  problem (2.1) (recall that 
a minimax solution can be defined as a function that is simultaneously an upper and a lower solution). 

We thus obtain 

u( t , x )=  lim.sup m a x u t ( t ' , x ' , y ) =  liminf minu~( t ' , x ' , y )  (2.11) 
~4,0 yeY ¢J,O ycY 

(t',x')--~(t,x ) (t',X')"-~(t,X ) 

This implies (2.6) and completes the proof  of  Theorem 1. 

3. Example 1. Consider the following unperturbed differential game and its Hamiltonian 

?r-~f(t,x,p,q), p c  P ,q~  Q 
o 

"{ = f f ( x ( O ) ) -  S g ( t , x ( t ) , p ( t ) , q ( t ) ) d t  
to 

H(t,x,~) = min max[(f(t ,x,p,q),~)-  g(t,x,p,q)] = 
pcP qcQ 

= max min[(f( t ,x ,p,q) ,~)-  g(t,x,p,q)] 
qEQ. p e t ' -  

(3.1) 

Consider the singularity perturbed differential game 

k = f ( t , x , y  I ,Y2 ) 

y l=( l le )[p ' -y l ]=hcl (y l ,p ' ) ,  y:=(l le)[q ' -y2]=ht2(y2,q ' ) ,  

0 
y =O(x(O))- S g(t'x(t)'yl(t)'y2(t))dt 

tO 

The Hamiltonian in this game is defined by 

He (t,x, Yl , Y2,~,~l ,~2 ) = ( f( t ,x ,  yl ,Y2 ) ,~)-  g(t,x,Yl ,Y2) + 

p ' ~ P ,  q '~Q  (3.2) 

(3.3) 
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where P and Q are convex compact sets and the functionsf(t,x,p, q),g(t,x,p, q) are continuous and satisfy a Lipschitz 
condition with respect to (x, p, q). The function o(x) is continuous, t e [0, 0], x e R n. 

In this example Condition 1 is satisfied. The upp,er characteristic complexes may be chosen here as follows: 

S=Q,  s=q,  S~=Q,s '=q,  we(q)=q 

M(t, x, q) = col (f(t, x, p, q), g(t, x, p, q)): p ~ P } 

Me(t, x, Yl, Y2, q') = col Q(t, x, Yl, Y2), hel(Yl, P3, he2(Y2, q3, g(t, x, Yl, Y2)): P' ~ P} 

To choose lower characteristic complexes, one simply interchanges the controls p and q. The compact set Y in 
Conditions 1 and 2 may be defined as P x Q = Y. 

Under the fact that P and Q are strongly invariant with respect to the subsystems of fast variablesy~(t) andy~(t), 
respectively, and also using estimates similar to the Gronwall inequality [14] for the norm of the difference between 
the slow variable xC(t) and the solution of the differential inclusion 

Jc(t) = f(t,x(t),y~ (t),q) ~ co f(t ,x(t) ,P,q),  x(t O) = x e (t o ) = x 0 

we obtain the following values of the parameters in Condition 1 

8(e)=@, r l< l  

p(e) = LdiamQe~[(e t~(~) - l)+ e -8(e)le ] ~ 0 as e --~ 0 

where L is the Lipschitz constant for the functions f(t, x, p, q), g(t, x, p, q) with respect to x, p, q. 
Analogous estimates, with q andp, Q and P interchanged, are obtained for the verification of Condition 2. 

4. The sufficient Conditions 1 and 2 may be modified so as to include new classes of problems (2.1), 
(2.2). We introduce the following definition. 

A compact set D e [0, 0] x R n is said to be strongly invariant and compatible with a Hamiltonian H if 
D is strongly invariant with respect to the differential inclusion II ~ II ~< Z,(x), where ~ x )  is the quantity 
in condition (1.4), defined for the Hamiltonian H. 

We modify Conditions 1 and 2 as follows. 

Condition 3 (Condition 4). A complex (S, M) e C T (H) (a complex (S, M) ~ C ~ (H)) exists such that, 
for any compact set D C [0~ 0] x R ~ which is strongly invariant and compatible with the Hamiltonian 
H, a compact set Y(D)  C R' exists such that 

GP(to,X, Xo,Zo,S)X Y ( D ) ~  U GE(to,X, xo,Yo,Zo,~/e(s)) (4.1) 
yo~Y(D) 

where G e ( . . . )  is the attainability set of some complex (Se, Me) e C T (He) ((Se, Me) e C ~ (He)). It is 
assumed here that for any e > 0 there are a well-defined mapping s ~ W~ (s): S ~ Se and quantities 
p = p(e) > 0, 8 = 8(e) > 0 such that lim p(e) = 0, lim 8(e) = 0 as e ~ 0. Relation (2.5) may hold for 
all e > 0, s ~ S, z0 e R, (to, x0) e D, x e [to + 8(e), 0]. 

Using this condition and following the same scheme as in Theorem 1, one can prove that the minimax 
solutions ve(t, x, y)  of the per turbed problem (2.2) converge to a minimax solution u(t, x)  of  the 
unperturbed problem (2.1) for any (t, x , y )  ~ D x Y(D ). 

Examp/e 2. Consider the singularly perturbed differential game 

x= f( t ,x ,y) ,  ey=-y+~(t,x,ct ,~),  t x e a , ~ e B  (4.2) 

3' = O(x(O))- S g(t,x(t),y(t))dt (4.3) 
to 

The Hamiltonian in this game is defined by 

H e (t,x,y,~,~!) = (f(t,x,y),~) - g(t,x,y)- 

-(I/E)(y,~)+(1 / E)~/(t,x,~) 

W(t,x,~1) = rain max(~ I ,~(t,x,c~,~)) = max min(~ I ,~(t,x,~,~)) 
aeA l~eB [~B c~A 

(4.4) 

(4.5) 
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The unper turbed differential game and its Hamil tonian  are 

Jc=f ( t , x ,~ ( t , x ,~ ,~) ) ,  otEA, ~ E B  

o 
)' = ~ ( x ( O ) ) -  ~ g(t,x(t),k(t,x,o~,~))dt 

t0 

(4.6) 

where 

Y(t,x,oO = col~(t,x,0~,13)):13 ~ B} 

Y(t ,x ,~)  = co{~(t ,x,a,~)):ct  E A} 
(4.7) 

It is assumed that  the functions f (  • ), g ( .  ), ~ ( .  ), t~(. ), Ok(" )/Ot, Ok(" )/~x are continuous, L / i s  the Lipschitz 
constant  for f (  • ) and g ( -  ) with respect  to x, y, and L is the Lipschitz constant for k( • ) with respect to x. 

In this problem Conditions 3 and 4 are satisfied. The upper  characteristic complexes may be chosen as follows: 

s = a ,  s = fL s ,  = a ,  s ' =  fL W(13)--13 
M(t, x, 9) = co{ (f(t, x, k), g(t, x, k)) : k E Y(t, x, 9)} 

Ms(t, x, y, ~) = co{(f(t, x, y), (l /~)(-y + k), g(t, x, y) ) : ~ ~ Y(t, x, 13)} 

For  the choice of the lower characteristic complexes,  the controls ct and 13 are interchanged. 
The compact  set Y(D) is defined as follows: 

Y(D) = col t ( t ,x ,  a ,  13) : (t,x) ~ D, 0~ ~ A, ~ E B} +B 1 

B l = { y E  R/:lly[l~< 11 

Let  r~ It] be the distance between the fast variabley~(t) and the set Y(t, x~(t), fl). Using an est imate for the ra te  
of  change of the function ~ [t] along a motion of  system (4.2), and also using est imates similar to the Gronwall  
inequality [1] for the norm of the distance between the slow variable x~(t) and the solution x(t)  of the differential  
inclusion 

.r(t) E co{f( t ,x( t ) ,~):~ E Y(t,x(t),~)}, x(t 0 ) = x t (t o ) = Xo 

we get the following values of  the parameters  in Condit ion 3 

8(e)=e  q, r I<1 

p(e) = Lf diam U(D) eLf(l+~)O[(e L/(l+~)8(t) _ 1) +e  -8te)/E ] --> 0 

a s  e --) 0.  
Analogous values are obta ined in the verification of Condit ion 4. 

Th i s  r e s e a r c h  was  c a r r i e d  o u t  wi th  t he  f inanc ia l  s u p p o r t  f r o m  the  R u s s i a n  F o u n d a t i o n  fo r  Bas i c  
R e s e a r c h  (93-011.-16032) a n d  the  I n t e r n a t i o n a l  Sc i ence  F o u n d a t i o n  ( N M E 3 0 0 ) .  
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